PHYSICS

DPP No. 50

Total Marks: 26

Max. Time: 28 min.

M.M., Min.

[9, 9]

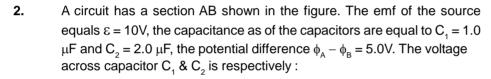
[9, 9]

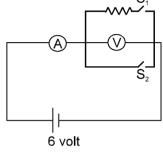
Topics: Current Electricity, Capacitance, Sound Wave, Kinematics

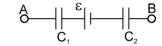
Type of Questions

Single choice Objective ('-1' negative marking) Q.1 to Q.3 Subjective Questions ('-1' negative marking) Q.4 to Q.5

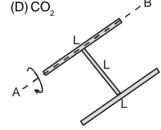
Comprehension ('-1' negative marking) Q.6 to Q.8

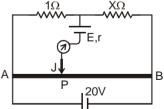

(3 marks, 3 min.)


(3 marks, 3 min.)


(4 marks, 5 min.) [8, 10]

1. An ammeter and a voltmeter are initially connected in series to a battery of zero internal resistance. When switch S₁ is closed the reading of the voltmeter becomes half of the initial, whereas the reading of the ammeter becomes double. If now switch S₂ is also closed, then reading of ammeter becomes:


- (A) 3/2 times the initial value
- (B) 3/2 times the value after closing S₁
- (C) 3/4 times the value after closing S₁
- (D) 3/4 times the initial value


- (A) 10/3 V, 5/3 V
- (B) 10/3 V, 10/3 V
- (C) 5/3 V, 5/3 V
- (D) 0 V,0 V
- 3. Under similar conditions of temperature and pressure, In which of the following gases the velocity of sound will be largest.
 - $(A) H_2$
- $(B) N_2$
- (C) He

- 4. A rigid body is made of three identical thin rods fastened together in the form of letter H. The body is free to rotate about a fixed horizontal axis AB that passes through one of the legs of the H. The body is allowed to fall from rest from a position in which the plane of H is horizontal. What is the angular speed of the body when the plane of H is vertical. Top View of the figure in the initial position.
- 5. A man holding a flag is running in North-East direction with speed 10 m/s. Wind is blowing in east direction with speed $5\sqrt{2}$ m/s. Find the direction in which flag will flutter.

COMPREHENSION

AB is a uniform wire of meter bridge, across which an ideal 20 volt cell is connected as shown. Two resistor of 1 Ω and X Ω are inserted in slots of metre bridge. A cell of emf E volts and internal resistance r Ω and a galvanometer is connected to jockey J as shown.

- 6. If E = 16 volts, $r = 4\Omega$ and distance of balance point P from end A is 90 cm, then the value of X is :
 - (A) 3Ω
- (B) 6Ω
- (C) 9Ω
- (D) 12Ω
- 7. If E = 16 volts, $r = 8\Omega$ and X = 9Ω , then the distance of balance point P from end A is:
 - (A) 10 cm
- (B) 30 cm
- (C) 60 cm
- (D) 90 cm
- 8. If E = 12 volts, $X = 9 \Omega$, then distance of balance point P from end A is
 - (A) 20 cm
- (B) 50 cm
- (C) 70 cm
- (D) Data insufficient

$$\omega = \sqrt{\frac{9g}{4\ell}}$$

Flag will flutter in south direction. **6.** (C)

$$V_v + V_A = 6$$
 ...(1)

; $\dot{V}_{_{V}}$ & $\dot{V}_{_{A}}$ being the potential across voltmeter & ammeter respectively after closing S₁.

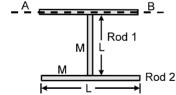
$$\frac{V_v}{2} + 2 V_A = 6$$
 ...(2)

$$V_{\nu} = 4$$
, $V_{\Delta} = 2$.

 $V_v = 4$, $V_A = 2$. after closing S_2 : –

$$V_v = 0$$

$$V_{\lambda} = 6$$


So that value after closing S_2 is 3/2 times the value after closing S₁.

2. [Ans:
$$V_1 = \frac{10V}{3}$$
, $V_2 = \frac{5V}{3}$,]

3. The speed of sound in air is
$$v = \sqrt{\frac{\gamma RT}{M}}$$

 $\frac{\gamma}{M}$ of H_2 is least, hence speed of sound in H_2 shall be maximum.

Decrease in PE = Gain in rotational K.E.

Mg
$$\frac{L}{2}$$
 + MgL = $I_{R_3} = I_{R_1} + I_{R_2}$

$$\frac{1}{2} \cdot \frac{4}{3} \text{ ML}^2 \cdot \omega^2 = \frac{\text{ML}^2}{3} \text{ ML}^2$$

$$\Rightarrow \ \frac{3}{2}\,\text{MgL} = \frac{2}{3}\,.\text{ML}^2\,.\ \omega^2 = \frac{4\text{ML}^2}{3}$$

$$\Rightarrow \frac{9g}{4L} = \omega^2 \qquad \Rightarrow \omega = \sqrt{\frac{9g}{4L}}$$

5. From given data

$$\vec{V}_{M} = 5\sqrt{2} \ \hat{i} + 5\sqrt{2} \ \hat{j}$$
velocity of man
Velocity of wind
 $\vec{V}_{W} = 5\sqrt{2} \ \hat{i}$

The flag will flutter in the direction in which wind is blowing with respect to the man holding the flag.


$$\Rightarrow \vec{V}_{WM} = \vec{V}_{W} - \vec{V}_{M}$$

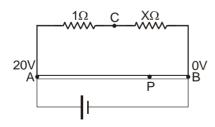
$$\vec{V}_{WM} = (5\sqrt{2} \hat{i}) - (5\sqrt{2} \hat{i} + 5\sqrt{2} \hat{j})$$

$$\vec{V}_{WM} = -5\sqrt{2} \hat{j} = 5\sqrt{2} (-\hat{j})$$

This implies direction of wind with respect to man in south.

Flag will flutter in south direction. Ans.

Let reference potential of B be zero. No current shall flow through galvanometer.


If
$$V_C - V_p = 16$$
 volts.

Now $V_p = 2$ volts.

.. V should be 18 volts.

Now
$$\frac{V_A - V_C}{1} = \frac{V_C - V_B}{X}$$

Solving $X = 9\Omega$.

7. Balance point is independent of r. It can be seen for balance point at P, $V_C - V_P = E$ in absence of cell, jockey and galvanometer.

8. For balance point at P.

$$V_C - V_P = E = 12$$

$$\therefore$$
 V_C = 18, V_P should be 6 volts.

Therefore

$$\frac{V_{A} - V_{P}}{\ell} = \frac{V_{P} - 0}{100 - \ell}$$
 or $\ell = 70$ cm.

